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1 Introduction

There has always been a lot to like about Chalmers’ article. You might
have thought, for example, that a theory of implementation should be most
concerned with telling us which things compute at all. Chalmers argues—
convincingly, in my opinion—that this is less interesting than the question of
which computations things perform. On his account, everything computes
something or other. But only complicated things instantiate complicated
programs. Computationalists about mind and brain arguably don’t need
much more than that. Whatever computation our brain performs, it’s surely
a doozy. Relatively few things manage it.

Put another way, a theory of implementation also implies a categorization
of computing mechanisms. Chalmers’ condition CSA nontrivially partitions
the world into objects that perform the same computation.1 That’s useful

1Strictly speaking it’s the conjunction of FSA and CSA that does the work. Since most
interesting machines are going to fall under the scope of CSA, I’ll focus on that.
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when we go to investigate, predict, and explain the behavior of computing
machines: things that perform the same computation ought to do the same
things, have the same parts, and be approached in the same way.

Many balk at the liberality of Chalmers’ account. I don’t. I have a different
worry. CSA doesn’t just divide the simple computations from the complex
ones. It also makes distinctions among the complex computations. In par-
ticular, it seems to imply the following taxonomic principle: two objects
perform the same computation if and only if they perform the same steps in
the same order. That falls out of CSA more or less directly. Computations
are specified by specifying state-transition rules. These prescribe, in pre-
cise detail, the transitions that an implementing machine must undergo for
any particular combination of substates.2 So it follows that two implemen-
tations of the same computation on identical input will undergo the same
state-transitions in the same order.

That used to seem obvious to me. Now it doesn’t. In what follows, I’ll try
to explain why.

2 Two Ways to Program

Thinking about the implementations we make can help us get a handle on
the one we don’t. So first, consider machines that are explicitly programmed
to do something. Computer scientists distinguish between two types of pro-
gramming styles: the imperative and the declarative.3 Most well-known com-
puting languages are imperative languages. As Hudak puts it:

Imperative languages are characterized as having an implicit state
that is modified (i.e., side effected) by constructs (i.e., commands)
in the source language. As a result, such languages generally have

2I ignore for the sake of space the case of probabilistic state-transition rules.
3For a good introduction to the difference, see [Hudak, 1989]. Backus gives a more

polemical account in his [Backus, 1978], reflection upon which which has greatly influenced
this paper.
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a notion of sequencing (of the commands) to permit precise and
deterministic control over the state. ([Hudak, 1989] 361)

Imperative languages specify a sequence of commands to be followed. The
commands themselves alter and change the state of variables, which can in
turn affect which commands will be followed at a future time. This should
sound familiar even to non-programmers: it is just the picture of computation
embodied in CSA.

Declarative languages treat programs differently. I’ll focus on functional
programming languages, a subset of the declarative ones.4 The primary
construct in functional languages is, unsurprisingly, the function. Writing a
program thus consists of writing a set of functions, and running a program
consists of evaluating a function for some values. A program thus describes
which functions are to be computed, but neither constrains nor guarantees
the order in which functions are evaluated. This is possible because functions
can only return new values, not change the value of existing parameters. Pure
functional languages are thus side-effect free: calling the same function with
the same parameters will always return the same value.

An example will clarify the difference. Suppose we had a list n of integers,
and wanted to determine the square of each. In imperative languages, this is
most naturally modeled by looping over the list and squaring each member
in turn, illustrated by the following pseudocode:

for t=1 to length n

n[t] = n[t]^2

next t

Note that the program implicitly specifies the order in which the members
of n are to be altered: from first to last. We could also make a program
that runs in the opposite direction. CSA tells us, however, that this would
would be a different program. Note too that the values of n and t change in

4The most well-known language with functional characteristics is Lisp, though Lisp
is technically multi-paradigm and includes declarative features. Haskell, Miranda, and
Erlang are probably the best-known purely functional languages.
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the course of running the program. That’s part of the reason why explicit
ordering matters: since computations can have side-effects on variables, one
must ensure that the right computations are performed at the right time.
The side-effects don’t happen to matter much in this case, but the presence
of mutable data structures requires explicit ordering of steps.

In a functional language like Haskell, the same computation can be done
quite differently:

map (^2) n

The map function takes a partial function and applies it to each member of
a list. The order in which it does so is not specified. Rightly so, for the
order is irrelevant: list n is not altered in the process (instead, a new list
is returned), and the result of squaring one element does not depend on the
square of any other element. As such, functions like map can be done in
parallel: a clever implementation could farm out the computation for each
element to any number of distinct processors.5 But that means that the order
in which substates of a implementing system transition is underdetermined
by expressions like the above: the same computation could be done in a
different order by different machines. So there seems to be a way of specifying
computations without specifying the order in which substates must change.
Constructs like map, then, specify what should be done, not the order in
which it must be done.

A few remarks are in order. First, as functional programs specify func-
tions to be performed without specifying order of execution, one might think
that they reside on a different plane. In particular, one might think that
they belong to Marr’s computational level rather than the algorithmic one
[Marr, 1982]. I don’t think this is the place for Marr exegesis, but I do think
that the similarity is only superficial; as Hudak notes, the difference here is
one more of degree than kind ([Hudak, 1989] 361). For one, functional lan-
guages exist. You can write programs in them and they will run. That alone

5This is not just a theoretical possibility; Google makes heavy use of a parallelized
version of map to deal with large datasets. See [Dean and Ghemawat, 2008] for technical
details. Chapter 22 of [Spolsky, 2008] is both a more accessible introduction and a partial
inspiration for this section.
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should distinguish them from the abstract computational level. Further,
functional programming is not magic: calculating any moderately complex
function requires breaking it down into coordinated application of the primi-
tive functions of the language. The resulting algorithms can be evaluated for
their computational complexity, their minimum time and space requirements,
and so on. In short, they have the same kinds of properties as familiar im-
perative algorithms. None of these properties apply to descriptions at Marr’s
computational level. Finally, it is not obvious to me that functional programs
are strictly more abstract than their imperative counterparts; functional pro-
grams; rather, they abstract away from different things. I will return to this
point in detail below.

Second, any non-trivial implementation will, when running, change its state
in some way or other. This is true even in implementations of functional
languages. The point is just that implementations of the same program need
not change state in the same order to count as the same program. Third, some
of these state-changes must come before others. In the Haskell expression
(add x (div y z)), for example, the inner div function must be computed
before its value can be added to x.6 Order of evaluation is specified by the
logic of the functions involved, though, not by the program.

Fourth and finally, it is of course true that any particular concrete compu-
tation of the above function could be described as a series of steps executed
in a particular order. But that is irrelevant. Any particular concrete com-
putation could also be described in minute detail as a series of atoms going
to and fro. Imperative descriptions of computations abstract away from the
fiddly details of material composition. That’s a good thing, and few com-
plain.I argue only that this very same abstraction process can be taken even
further. We can also describe computations in a way that does not specify
the precise order of steps involved. So I’m not making the absurd claim
that physical implementation doesn’t happen in time, or that we couldn’t
describe the temporal ordering of facts; again, the claim is only that two im-
plementations of the very same program can change state in different ways
at different times. To put it in Chalmers’ terms, what is “organizationally

6Though note that the order need not be what you might expect. Haskell functions
are curried, so an expression like Add 2 3 returns a partial function x + 2 which can be
applied to the second parameter.
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invariant” across implementations need not be the temporal order in which
steps are performed.

3 Two Ways to Implement Programs

The points above are suggestive, but they are limited to programs rather than
their implementation. I believe they can be generalized, however, to a point
about implementation as well. There are, I suggest, two ways to understand
implementation. Call them the Turing Paradigm and the Church Paradigm.

Consider a simple Turing machine—call him Art—who performs a parity
calculation. Given an input string of n strokes, he’ll loop over it, merrily
deleting the strokes, and end by writing a stroke if the initial input was even.

There are at least two ways in which we might understand Art’s behavior.
First, we might note that Art’s behavior is isomorphic to Table 1. (As-
sume that Art satisfies the conditions set forth in CSA, plus whatever other
counterexample-barring conditions you please.) Knowing Art’s machine ta-

‘0’ ‘1’
1 ‘1’: Halt ‘0’:R:2
2 Halt ‘0’:R:1

Table 1: Art’s machine table

ble lets us predict and explain his behavior.

Thinking of implementation in terms of machine tables—or, more generally,
in terms of abstract specifications of state-transition rules—also commits us
to categorizing Art in certain ways. CSA embodies both of these commit-
ments. First, Art’s machine table specifies a series of steps and the conditions
under which they are to be followed. So any other machine which performs
this computation will do the same things as Art does, and in the same order.
Second, Art has a number of parts: a read head, a tape, and something to
keep track of state and transition in the right ways. Any machine that com-
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putes as Art does will thus have computationally similar parts. Of course,
those parts may made of different stuff, they may be faster or slower, efficient
or wasteful; computation is meritocratic that way. Whatever implements the
same computation, however, will have a set of parts that are similar to Art’s.

Call these commitments together the Turing Paradigm of computation. The
Turing Paradigm suggests a story about how we ought to investigate and
understand computing systems. Take something that performs an unknown
computation—say, the brain. The primary task of understanding a new
computation is twofold. First, figure out which parts correspond to inputs,
state, and data. Second, figure out the steps and ordering principles that
cause the relevant transitions between states. Do this, and you’ll understand
the computation that the brain performs.

We can also describe Art’s behavior in a different way. To begin, consider
the pair of functions in figure 1:

f1(s, n) =

{
f2(replace(s, n, 0), n′) if index(s, n) = 1
replace(s, n, 1) if index(s, n) = 0

f2(s, n) =

{
f1(replace(s, n, 0), n′) if index(s, n) = 1
s if index(s, n) = 0

Figure 1: Functional description of Art

(Some notation: The primitive index(x, y) function returns the integer that
is the yth member of the list x.7 The primitive replace(x, y, z) function takes
a list and two integers, and returns a list that is the result of substituting z
for the yth member of x. The one-place successor function x′ does what it
always does.)

Suppose you wanted to solve for some particular value of f1 – f1([1, 1, 1, 0], 1),
say. You could do that in lots of ways (pure intuition; trial and error; pay-

7I’ve used lists to make the parallel obvious. If you’d prefer a more mathematical
flavor of functions, you could replace everything with, say, Gödel-encoded integers. I see
no formal reason to prefer one over the other, though more specific explanatory interests
may give us a reason.
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ing for the answer). But one possibility—and one that’s guaranteed to work
if the function is well-defined—is to solve by successive functional substi-
tution. Since the first element of the list is 1, the value of the function
is given by f2(r([1, 1, 1, 0], 1, 0), 1′). Substituting again, the value will be is
f2([0, 1, 1, 0], 2). Do this over and over again, and you’ll get the answer.

This is, of course, precisely what Art does. Start him on a list s of strokes
and he computes f1(s, 1). He does so by serial substitution of functions: the
read head performs the primitive function index, the write head does replace,
and so on. Having appropriately substituted, he then tries to compute f2 on
the new input with n = 1′. And so on and on until he halts, the now-altered
tape giving the value of f1(s, 1).

So, here is an alternative—admittedly loose and informal—model of imple-
mentation. We may specify a computation by specifying a set of functions.
These divide into primitive functions and recursively defined derived func-
tions. Something implements this computation if it has a mechanism for cal-
culating the primitive functions, a mechanism or mechanisms that coordinate
functional substitution, and when run actually does functional substitution
in an appropriate way. Call it the Church Paradigm of computation, inspired
by the process of normal form reduction in the Lambda Calculus.

Adopting the Church paradigm makes clear why a specification of an imple-
mentation need not specify the order in which steps are taken. Functional
substitution itself demands that the value of functions be determined be-
fore others.8. Further, in many cases the process of functional substitution
can be done in many different orders without affecting the result. So which
substitutions are done when can be left up to the implementation of the
language.

8Though the optimal order of evaluation is itself a complex problem; see [Hudak, 1989]
§2.2
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4 Computational Taxonomies

If we cared only about adjudicating which things compute, then there would
be no difference between the Turing and Church paradigms. (Save, of course,
that Chalmers has done a very nice job of formalizing implementation on the
Turing paradigm while I’ve at best waved my hands at the Church version.)9

But Chalmers has shown that we should care about more than that: we
should care about how we individuate implementations as well. So the dif-
ference matters in two ways.

First, if we care about taxonomizing implementations, then the Church
paradigm will group together implementations that the Turing paradigm
counts as distinct. The preceding pair of functions might, for example, be
implemented by a distributed series of distinct mechanisms – one to calcu-
late index, one to calculate replace, one to calculate the successor function,
and another to make sure everything gets to the right place. The order in
which these distinct mechanisms do their job might differ from the order in
which Art performs them. On the Turing paradigm, different order means
a different computation. On the Church paradigm, by contrast, we do not
specify the order in which functions are evaluated; that’s left up to the details
of implementation. So on the Church paradigm, our hypothetical machine
should count as performing the same computation as Art.

An important clarification. I have said that the Church paradigm abstracts
away from certain details that Turing accounts focus on. But that does not
imply that the Church paradigm is strictly more abstract than the Turing
one. In fact, I think it isn’t. Computations that the Church paradigm counts
as distinct might be implemented by the very same Turing Machine. A simple
example: the Haskell functions sum and fold (+) 0 both give the sum of

9Spelling out the Church version more fully would require cashing out two notions:
function application and function coordination. I take it that both can receive a straight-
forward physical interpretation: function application consists of the transformation of some
values into others, while function coordination consists of passing values to the appropriate
bits that do functional application. Specifying that at the relevant level of abstraction be-
yond both the scope of this paper. Cashing out such notions in physical-functional terms
seems like a reasonable possibility, however, and that makes the present at least a sketch
of a theory of implementation, not just program specification. Thanks to the reviewers
for pressing me to clarify this point.
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a list of integers. The very same Turing Machine could implement both
functions. Yet arguably, they count as distinct from a functional perspective:
the former is a one-place function, while the latter is a partially applied three-
place function.

If this is right, the mapping from Church-similar computations to Turing-
similar ones is really many-many. The two ways of carving up computations
cross-cut each other, rather than one being more abstract than the other.
And that is what we should expect given their differing focus. The Church
paradigm groups computations based on the mathematical functions they
implement, abstracting away from temporal ordering of steps. The Turing
paradigm groups computations based on temporal ordering of primitive op-
erations, abstracting away from the mathematical functions performed. The
two thus carve up the space of computations differently.

Second, if we care about explaining implementations, then the two para-
digms will tell us to look for very different things. The world of the Turing
paradigm is one of states and their transitions. The Church paradigm, on the
other hand, tells us to look for function-applications and their coordination.
What we understand as the mechanistic parts of an implementation, and how
they work together, will differ on each paradigm. That matters. Mechanistic
strategies are important for understanding complex biological systems like
brains, and such strategies rely crucially on a decomposition of a system into
appropriate parts [Craver, 2007]. The difference between the two paradigms,
therefore matters when we look to explain how implementations work.

5 Church and the Brain

How we understand a particular implementation will thus depend on how
we conceptualize implementation itself. I don’t think that either paradigm
is inherently superior; which we adopt should depend on our explanatory
interests. Sometimes we really do want to know about the particular compu-
tational steps and the order in which they’re performed; sometimes knowing
these details is just more illuminating. If so, we should understand implemen-
tation as Chalmers suggests. Other times, however, thinking of functional
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application and its coordination is more useful.

I’ll conclude with one place where I think the Church paradigm deserves
more attention. What I care about most is brains. I’d like to know how they
work. I think computationalism is a promising strategy for figuring that out.
And I think that the Church paradigm might be a better way to understand
which computations brains implement.

There is increasing evidence that individual brain regions are specifically in-
volved in a multitude of distinct cognitive tasks (pluripotency), and that
the same cognitive task can specifically activate distinct groups of brain re-
gions, either simultaneously or at distinct times (degeneracy).10 One way
to understand these facts is what Michael Anderson has termed the Neural
Re-use Hypothesis (NRH) [Anderson, 2007, Anderson, 2010]. According to
NRH, neural circuits originally used for one task can be re-used in different
tasks. Importantly, this need involve no or only minimal change to the re-
gion itself. The same (type) of function is performed; what changes instead
is the pattern of connectivity between the region and other functional re-
gions. What matters for cognition is, then, not just what brain regions are
doing, but how that activity is connected with other brain regions. The re-
sulting picture of brain activity might be like that suggested by Luiz Pessoa
for emotion [Pessoa, 2008], in which some regions perform specialized (but
domain-general) computations, and their activity is flexibly coordinated by
densely connected hub regions like the amygdala.

This picture of brain activity, I suggest, resembles the Church picture of
implementation more than the Turing alternative. On it, what matters for
understanding the brain is understanding the coordination between the com-
putation of primitive functions. Conversely, if this is right then looking
at state-changes won’t be terribly telling: as brain regions are pluripotent,
changes in their state are interpretable only by looking at the total context

10For pluripotency and degeneracy, see for example [Price and Friston, 2002,
Friston and Price, 2003, Price and Friston, 2005, Poldrack, 2006]. Carrie Figdor connects
degeneracy to arguments about multiple realizability; importantly for my purposes, she
notes that we can get flexible implementation of cognitive functions even within the very
same system at different times [Figdor, 2010]. The point of the present paper, however,
is broader than usual multiple realizability arguments; it is similar in scope to Putnam’s
argument for multiple realizability even at the computational level ([Putnam, 1991] Ch5).
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of activation. Along the same lines, degeneracy implies that there is often
more than one neural route to performing the same task, and that different
routes might be chosen at different times depending on overall brain context.
So looking at the particular sequence of steps performed during a task might
obscure important similarities between spatially distinct patterns of brain
activation.

Again, that is not to imply that the particular sequence of neural steps is
unimportant tout court : temporal ordering is an critical part of what the
brain does. Nor is it to imply that for some explanatory tasks, learning
about that temporal ordering might be a crucial step for understanding what
the brain is doing. Rather, it is just to suggest that for some explanatory
purposes—and in particular, for understanding the interrelations between
different brain areas—temporal ordering may be less important than identity
of mathematical function. If that’s so, then the Church paradigm might let
us make progress where a Turing model would get bogged down in details.

These models of brain function are still in their infancy. They might be
wrong. But they seem worthy of consideration. If so, then we should at
least consider models of implementation that would let us understand them.
Should Turing’s way fail, we may have to take our brains back to Church.11

11Thanks to Jim Virtel and three anonymous reviewers for extremely helpful comments
on a previous draft.
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