
Dispositional Implementation Solves the Superfluous

Structure Problem

Colin Klein

Abstract. Consciousness supervenes on activity; computation supervenes on struc-
ture. Because of this, some argue, conscious states cannot supervene on compu-
tational ones. If true, this would present serious difficulties for computationalist
analyses of consciousness (or, indeed, of any domain with properties that supervene
on actual activity). I argue that the computationalist can avoid the Superfluous
Structure Problem by moving to a dispositional theory of implementation. On a
dispositional theory, the activity of computation depends entirely on changes in
the intrinsic properties of implementing material. As extraneous structure is not
required for computation, a system can implement a program running on some
but not all possible inputs. Dispositional computationalism thus permits episodes of
computational activity that correspond to potential episodes of conscious awareness.
The Superfluous Structure Problem cannot be motivated against this account, and
so computationalism may be preserved.

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

SyntheseFD.tex; 22/08/2007; 12:10; p.1



2

1. The Problem With Structure

I took the train to work today. The infrastructure of the Chicago Tran-
sit Authority ensures that I could have taken many different trains, and
that the same train could have taken different routes. But I took only
one train, and it travelled along only one track. There are some facts—
travel time, say—about my transportation experience that supervene
only on the facts about my train and its journey. As long as the same
train went in the same way along the same track, I would have had
exactly the same transportation experience; what went elsewhere in
the system was quite irrelevant. Of course, in one sense those other
facts were relevant—they likely caused some of the facts about my
train. But holding fixed the facts about the actual activity of my train,
we hold fixed the facts about my transportation experience; it is in
that sense that the rest of the system did not matter. Transportation
experiences are thus potentially episodic: it would be possible to have
an identical trip even if the rest of the system were to vanish.

As with transportation experiences, perhaps too with conscious ex-
periences. It is nice to have complicated brains, especially ones that can
support a multitude of different experiences. However, you might think
that as far as any particular train of awareness goes, what we experience
depends only on what is actually going on in our brains. Extra structure
is handy, but strictly irrelevant for episodes of awareness. If you think
this, you think that conscious states can, at least potentially, be episodic
as well.

Based on these observations, Tim Maudlin has argued for the strik-
ing conclusion that conscious states can neither supervene on computa-
tional states nor be explained by appeal to computation.1 The essence
of the argument is simple. To count as implementing some program π, a
fairly large bit of structure has to be in place. Further, this structure is
non-optional: its presence is required lest we be forced to admit that ev-
ery sequence of events implements π. However, in ordinary cases where
π runs on some input τ , much of that structure is not computationally
active.2 Hence, whether a system is computing π(τ) is not just a matter
of actual activity; equivalently there can be no episodic computations
of π(τ). So the nature of consciousness cannot be computational. Sim-
ilarly so for transportation,3 or for anything else that admits of single
episodes that supervene on actual activity—consciousness is a snappy
example, but the problem generalizes to many things about which the
computationalist might want to theorize.

Call the thesis that conscious states supervene on computationalist
states the Computationalist Thesis. Maudlin argues that the compu-

SyntheseFD.tex; 22/08/2007; 12:10; p.2



3

tationalist thesis cannot be held consistently with what we have just
asserted. The argument runs thus:

1. Conscious states supervene on actual activity. (Activity Thesis)

2. Therefore, no two things can differ in conscious state without dif-
fering in actual activity. (from [1])

3. Conscious states supervene only on computational states. (Compu-
tationalist Thesis)

4. Two things that differ in computational status—that is, in whether
or not they are computing anything at all—must differ in conscious
state. (from [3])

5. Two things may differ in computational status without differing in
actual activity. (Premise)

6. Therefore, two things can differ in conscious state without differing
in actual activity (from [4] and [5]).

Since [2] and [6] are straightforward contradictions, something has gone
wrong. It is tough to see where, though. If the computationalist really
is committed to the two supervenience theses, then the only possible
point of attack is premise [5]. But this seems hopeless—most authors
agree that abandoning standard constraints on structure would result
in everything implementing every Turing machine; computationalism
would then collapse into panpsychism, which is hardly a happy result.
Therefore, Maudlin concludes, we must abandon the weakest premise
of the bunch—the computationalist thesis itself.

Call the general problem the superfluous structure problem (SSP).
In order to count as an implementation, it looks like a system must
have more structure than is strictly active during a particular compu-
tation. This puts computationalism in conflict with the activity thesis.
SSP is wider than it may appear at first. If successful, SSP will block
computationalism in any of domain where the activity thesis is plau-
sible.4 Indeed, I suspect that SSP is one motivation behind Searle’s
oft-misunderstood critiques of computationalism in his (Searle, 1990).
Many authors assume that the problem for computationalism is the
overgeneration worry he lays out in §IV. But there is a deeper worry
that Searle sets out in both §IV and §VI. Searle writes that if you do
not posit conscious homunculi then:

. . . you are left only with a pattern of events to which someone from
the outside could attach a computational interpretation. Now, the
only sense in which the specification of the pattern by itself provides

SyntheseFD.tex; 22/08/2007; 12:10; p.3



4

a causal explanation is that if you know that a certain pattern exists
in a system you know that some cause or other is responsible for
the pattern ((Searle, 1990) 32).

But, he goes on, being-mappable is not the right sort of thing to explain
conscious behavior. One way of understanding this is as a worry that
the ordinary requirements on computation require mappings to more
structure than is active. This additional activity is necessary to certify a
particular system as an implementation. Certification does not actually
do any work, though. So if you think that work is what matters, you
will think that computationalist accounts are misguided.

I think that a computationalist can nevertheless avoid SSP. In sec-
tion two I will review reasons to think that the simple counterfactual
account of implementation that motivates [5] is flawed. In section three,
I argue that we can construct a dispositional theory of computation that
overcomes the problems with using a simple counterfactual account. I
use this account to develop an theory of episodic implementation in
section four. On a dispositional account of episodic implementation,
computational activity supervenes entirely upon actual activity. If the
computationalist claims that conscious states supervene on the activity
of episodic implementations, he can deny premise [5]—and thereby
preserve computationalism. I conclude with an examination of the dif-
ference between being an implementation and computing a function,
showing how the dispositional account avoids SSP by inverting the
usual pattern of dependence between the two notions.

2. The Simple Counterfactual Account of Implementation

Taking the computationalist thesis to heart, let us suppose that that
a system has a conscious experience E just in case it implements some
program π running on some input τ . Determining whether a system S
has the experience E at some time, therefore, reduces to the problem
of determining whether S is an implementation of a TM running π on
τ .

That problem has received extensive discussion in the literature. At
a first pass, one might think that meeting the following three conditions
would be enough:

I1 There exists a mapping from both the states of the tape and the
states of the abstract specification of π on the one hand to dynamic
states of S on the other.

I2 The transitions of the states and the tape when started on τ map
to those prescribed by the machine table for π.

SyntheseFD.tex; 22/08/2007; 12:10; p.4



5

I3 Had the input to S been different, S would still have fulfilled I1 and
I2.

[I1] and [I2] ensure that the material of S goes through the right sorts
of motions as it computes. Mappings are cheap, though, and we can
gerrymander mappings between any physical system and any Turing
machine. Since gerrymandered mappings typically involve processes
that are fleeting and transient, altering the ‘input’ to them would cause
them to fail to correspond to our mapping. [I3] thus requires a system
to support a mapping not just in the actual case but also for any
counterfactual input as well.5 Gerrymanders will not satisfy this, and
so I3 rules them out.

These three conditions are the simple counterfactual account of
implementation. On the simple counterfactual account, it is clear why
premise [5] comes out true. There will be points where a Turing machine
did move left, say, but would have moved right if the tape square it was
reading had been different. [I3] requires the truth of counterfactuals
like these. However, what makes those counterfactuals true might be
completely inert machinery—if one engine drives the TM head left and
another right, the right-moving engine will be completely silent during
a move to the left. Its mere presence does not count as part of the
computational activity of the system, but implementation requires its
presence. Hence [5] above comes out true.

If the simple counterfactual account were the correct theory of im-
plementation, then SSP would likely be unavoidable. However, there are
at least three reasons to believe that the simple counterfactual account
cannot be an adequate account of computation.

First, it certifies epiphenomena as proper computations: if I simulate
a run of π(τ) on my (non-TM) home computer, the pixels on my display
will satisfy conditions [I1]-[I3]. But clearly, the pixels of my display are
not implementing anything—their activity is simply an epiphenomenon
of the activity going on in the bowels of my CPU.6 Second, counterfac-
tuals can be blocked. For all I know, a madman may lurk behind me,
waiting to smash my computer to bits the moment I try to save this
file. If this is the case, then my computer no longer satisfies [I3] with
respect to the word processing program: there is at least one chain of
input to S for which the relevant counterfactuals about the program
would not be true. But surely the mere presence of some external agent
should not negate the computational status of my computer.7 Third,
counterfactuals can be made true in illegitimate ways. Suppose I map
some actual set of transitions to the states of a turtle as it ambles along.
I then set up a computer with a camera next to it in such a way that if
some ‘input’ had been different, the turtle would have been prodded in

SyntheseFD.tex; 22/08/2007; 12:10; p.5



6

such a way as to produce a different (appropriate) ambling. We should
still not say that the turtle computes (if anything, the computer next
to it does). Nevertheless, [I3] is still satisfied; it is just satisfied in a
jury-rigged, illegitimate manner.8

The simple counterfactual account must therefore be replaced with
something more robust. There are two (nonexclusive) options for do-
ing so. First, we could look for further counterfactual conditions that
rule out problematic cases. Second, we could appeal to constraints on
the implementing matter itself. For example: if we require that state
transitions to be caused by the previous states, rather than just follow-
ing them in the right sequence, then the problem of epiphenomena is
avoided.9

I will defend a version of the second strategy. If we require the states
of π to map to dispositions of the implementing system, then we have
an adequate account of computation. This account will also form the
basis for a solution to SSP.

3. Dispositions and Computation

Dispositions are (or supervene on) intrinsic properties of objects, and
give them conditional causal powers. Typically, dispositions of an object
are picked out by specifying the conditions under which the disposi-
tion would manifest and the effect that this manifestation would have.
Matches have the disposition to light when struck, batteries in a flash-
light have the disposition to power the bulb when the switch is flipped,
and so on.

Dispositions are natural properties to appeal to when we analyze
functional systems. Cummins emphasizes that we can analyze many
complex systems into a series of interlocking dispositions, where the ef-
fect of one disposition includes the manifestation conditions of another
disposition (Cummins, 1980). Similarly, implementing a Turing ma-
chine can be decomposed into sets of dispositions associated with each
entry in the machine table. In the case of a TM, both the manifestation
conditions and the effects will typically be complex. The manifestation
conditions for a particular effect will include both something about the
previous state of the system and the current state of the tape. The
effect will itself include both changes to the tape, movement of the
head along the tape, and the satisfaction of part of the manifestation
conditions for a disposition associated with the next state.

I will make those conditions more formal in a moment. Note first
though that if TM states could be successfully identified with sets of
dispositions, then we could overcome many problems with the simple

SyntheseFD.tex; 22/08/2007; 12:10; p.6



7

counterfactual account. To begin with, dispositions make true counter-
factuals under ordinary circumstances. To say that a match has the
disposition to light when struck is to say that, under ordinary circum-
stances, a match would light if struck—this is true, of course, even if
the match is never actually struck. Similarly, requiring a machine to
have the right set of state-dispositions makes true input counterfac-
tuals under normal circumstances: if the input had been different, a
different set of manifestation conditions would have obtained, and so
a different sequence of disposition-manifestations would have occurred.
Hence, a dispositional account and a simple counterfactual account
should converge in happy cases.

Dispositions are considerably more powerful than simple counter-
factuals, however. The manifestation of a disposition can be blocked in
non-ordinary circumstances. If a match is struck in anaerobic conditions
it will not light, even though it still possesses the disposition to light
when struck. Similarly, my computer may still have the correct set
of state-dispositions even if, as a matter of fact, the manifestation of
those dispositions would be blocked by external circumstances. Hence,
something can implement π(τ) even if some input counterfactuals are
blocked.

Something has a disposition in virtue of a first-order intrinsic prop-
erty.10 This first-order property is important. For one, it makes it the
case that dispositions cause their typical effects when those effects
occur. Hence, we may eliminate merely epiphenomenal implementa-
tions of π, because the states to which we map do not have the right
sort of intrinsic causal powers. Further, we can distinguish cases where
the disposition actually causes an effect from ones where the effect is
reliably caused by some entirely extrinsic system. A mere stick of wood
does not have the disposition to light when struck. It does not gain
that disposition even if someone lurks waiting to set it ablaze should it
happen to be struck. Similarly, we may distinguish cases where the com-
putational counterfactuals are made true in the correct way from the
cases where the appropriate computational counterfactuals are made
true by merely extrinsic supporting machinery. Hence worries about
illegitimate implementations need not arise.

Finally, dispositional theory looks tantalizingly close to something
that could solve SSP. Although dispositions can be picked out in terms
of their effects on other objects, neither the possession of that dispo-
sition nor the manifestation of it requires the presence of an external
object. Consider the disposition of a battery to power a flashlight bulb.
The disposition holds in virtue of some intrinsic chemical properties of
the battery. The manifestation of that disposition consists in a certain
chemical event. This chemical event should, under ordinary flashlight-

SyntheseFD.tex; 22/08/2007; 12:10; p.7



8

circumstances, be sufficient to light the bulb. However, the very same
disposition can manifest—that is, the very same chemical event can
occur—without the presence of a flashlight bulb. Similarly, we might
think that computationally relevant dispositions can exist and manifest
even if some of the other structure in terms of which they are picked
out is not present.

Alas, SSP does not fall so easily. To see why, let us make the proposal
on the table more precise. First, let us assume that a system S has
features that map on to each of the common features of the Turing
architecture—that is, it has a single discretely divided linearly ordered
mark-preserving tape, and a head that can move in either direction
along the tape and make marks upon it. Let us suppose that π is
specified via a standard machine table—that is, a list of each possible
combination of state and tape symbol and a corresponding instruction
that specifies both what the system should do to the tape and head,
and what state should follow. Call each of these scenarios an entry in
the machine table. Each entry specifies some (possibly empty) set of
changes to be made to the tape and the head position. It also specifies
an outgoing set of entries that could follow it (normally called the next
state). The entry that will be executed is drawn from the outgoing set
but depends also on the state of the tape. The opposite of the outgoing
set relation is the incoming set; the instructions for an entry will not
execute unless it has been immediately preceded by some entry in the
incoming set and the tape is as specified for the entry.

Given this, say that some system S implements π on τ just in case:

D1 For each entry in the machine table of π, there is a disposition d
of S such that for the associated state x of the tape:

D1a d will manifest just in case both x and any entry in the set
of incoming transitions obtains.

D1b The manifestation of d consists in changing the tape and
moving the head as per the machine table.

D1c When the outgoing transition is a non-halting one, then the
manifestation of d is part of the manifestation conditions for
each entry in the set of its outgoing transitions.

D1d When the outgoing transition is a halting one, d does not
form the partial implementation conditions corresponding to
any other state, and ensures (if need be) that no further
computationally relevant transitions will occur.

D2 When run on τ , dispositions of S manifest in the proper order as
specified in the machine table for a run of π.

SyntheseFD.tex; 22/08/2007; 12:10; p.8



9

[D1] is the heart of the proposal: it says that for each entry in the
machine table, S is disposed to transition as specified just in case the
tape is as appropriate and is in the state that some previous state
has partially enabled. When it manifests, its manifestation consists in
causing the head position and tape to change in appropriate ways, and
to act as partial manifestation conditions for the next state.

A note about ‘states’. There is nothing in S corresponding directly
to the present state of a TM; the interlocking sets of dispositions
correspond to individual entries of the machine table. However, there
is an important sense of state that is preserved. The entries for each
state in a machine table all share a partial condition of manifestation—
namely, that which is caused by any previous transition that is listed
as causing that state. To say that S is in some state is to say that
the manifestation conditions of each of a set of dispositions partially
obtain. Which disposition actually manifests will depend on the state
of the tape as well: thus the dispositions that belong to a state share
a part manifestation condition, but differ in their total manifestation
conditions according to the state of the tape. [D1d] ensures that the
occurrence of the special transition to a halt state ensures that no
new states will obtain and (if need be) that the parts of the system
are put in a state where they can no longer do any anything. The
final condition, [D2], just ensures that a run of π(τ) consists in the
appropriate dispositions actually manifesting as prescribed.

This theory of implementation enjoys the benefits we expected from
a theory of implementation: it ensures that the right counterfactuals are
true under normal circumstances (and true for the right reasons), while
allowing that the effects of some dispositions might be blocked under
less than ideal circumstances. Alas, it still does not avoid SSP. For note
that satisfying [D1] may well require the possession of dispositions that
never manifest on a particular run. Our dispositional theory requires
inert, unmanifested dispositions to be in place to take care of different
input. Hence SSP is not yet solved. However, the dispositional theory
does offer a way to revise the computationalist thesis that does solve
SSP.

4. Episodic Implementation

The only stumbling block of a dispositional account is the requirement
that all possible state-transitions of π correspond to some disposition
of S. Suppose we had a theory of episodic implementation—that is,
a theory that permits S to implement π(τ) without the possibility of
implementing π on every input. Then we could avoid SSP by chang-

SyntheseFD.tex; 22/08/2007; 12:10; p.9



10

ing the computationalist thesis slightly. If conscious states supervene
on episodes of implementation of π(τ) rather than full implementa-
tions, then (since episodically implementing π(τ) would not require
the presence of superfluous structure) premise [5] would be false and
SSP avoided.

For those used to the simple counterfactual account, episodic imple-
mentation might seem like madness. The whole point of excess structure
was to block overgeneration; abandon that structure and it looks like
we are back where we started from. Upon closer inspection, though, a
dispositional account of episodic implementation does not overgenerate.

Formulating a dispositional account of episodic implementation is
straightforward. Take the set of entries p in the machine table for π that
specify transitions that occur on a run of π(τ). Say that S′ episodically
implements π(τ) if it satisfies [D1] and [D2] for p. That is, an episodic
implementation of π(τ) just consists in manifesting exactly those dispo-
sitions that are needed to compute π(τ) . Leave it entirely unspecified
what other dispositions the system might have, so long as they do
not conflict with the activity of S as it computes π(τ). An episodic
implementation of π(τ) has the dispositions to compute π(τ), and those
dispositions alone manifest during an episode of implementation.

Any example will help to make the thesis clear. Let π be specified
by the machine table in Figure 1: Suppose some S fully implements π.

State 0 1

1 1:4 R:2

2 L:3 R:1

3 Halt 0:3

4 Halt R:4

Figure 1. The Machine Table of π

When started on a tape with an even number of ‘1’s this machine will
leave the tape with one more; with an odd number, one less. Imagine the
dispositions of S in virtue of which it counts as a full implementation
of π to involve whatever material you please. If S is run on a tape
containing an odd number of contiguous ‘1’s—say on a tape with τ = 3
‘1’s—only the dispositions corresponding to the bold entries above will
manifest.

SyntheseFD.tex; 22/08/2007; 12:10; p.10



11

Strip down S to create a machine S′. S′ has only the dispositions
of S that correspond to the bolded entries in the machine table of π;
further, they manifest in exactly the same way when S′ is started on
τ . Although we specified some of these dispositions in S by reference
to their relations to other dispositions of S that S′ lacks, that should
not worry anyone. As we saw above, although we may pick out some
dispositions in terms of potential causes and effects, we can make sense
of those dispositions manifesting without causing those effects.

S′ is an episodic implementation of π(τ) . It has exactly the dispo-
sitions that an ordinary run of a full implementation of π on τ would
manifest. I claim that this is sufficient for it to compute π(τ) in any
relevant sense. Now for the obvious objection: does this over-generate?
Are we forced to say that the world is chock full of S′-like things?

Certainly not. For one, we are now quite far from cheap mappings
between facts about the world and transitions of π. Our mapping iden-
tifies stable properties of the world that manifest repeatedly. On a
run on τ , our conditions require each of the states to manifest their
disposition at least once, and one (corresponding to being in state one
on a tape square with a ‘1’) will have to manifest more than once.
Episodic implementations of more complex programs will require the
very same dispositions to manifest even more times.

The presence of these stable dispositions also allows us to distinguish
episodic implementations from superficially similar non-computing sys-
tems that are problematic for simple counterfactual accounts. Mark
Bishop imagines something similar to episodic implementation and
concludes that the result would be a sort of ‘wind-up toy’ that simply
unfolds in a way that maps onto appropriate state-transitions with-
out properly computing (in his (Bishop, 2002), §7). The armature of
Maudlin’s stripped-down machine presents a similar challenge. For both
sorts of system, it looks like we can construct trivial machines that are
disposed to do the computationally appropriate thing at each point in
response to the state of the system and the tape.

Closer examination reveals this to be a groundless worry. The dis-
positional theory does not claim that it is sufficient for an episode
of implementation that a system have the appropriate dispositions at
the computationally appropriate times. It requires that a system have
standing dispositions to respond in the correct ways that manifest at
the correct instant. True ‘wind-up toys’ presumably change a ‘1’ to a ‘0’
when in state 3 only incidentally. They would not do so at other points,
even under normal conditions. So if while in state 3 at some later stage
they were moved artificially along the tape back to a ‘1’, they wold not
be disposed to change that 1 to a 0—indeed, they would just continue in
whatever sequence they had been wound to follow. Hence, they do not

SyntheseFD.tex; 22/08/2007; 12:10; p.11



12

have the required dispositions, and the dispositional account correctly
rules them out.11

Requiring standing dispositions—again, stable, causal properties of
a system—allows for a middle ground between profligate mapping and
full implementation. This should be clear for those who like counter-
factual accounts. The presence of standing dispositions makes true a
subset of the counterfactuals true of a full implementation of π. In this
case, our episodic implementation happens to have just those disposi-
tions that manifest when π is started any tape with an odd sequence
of contiguous ‘1’s. Hence, S′ manifests not just the dispositions that π
manifests on τ , but also those that would manifest on a tape with five
ones, seven ones, etc. So while our episodic implementation of π(τ) is
more limited than a full implementation of π, it is bound by constraints
that are not satisfied by patches of wall and buckets of water.

The fact that an episodic implementation still makes true (under
ordinary circumstances) a range of input counterfactuals further shows
that not everything counts as an episode of implementation of π(τ). For
consider the following TM π′, specified by the machine table in figure
2: Our system S′ is also a perfectly ordinary full implementation of

State 0 1

1 Halt R:2

2 L:3 R:1

3 Halt 0:3

Figure 2. The Machine Table of π′

π′; indeed, any episodic implementation of π(τ) will implement π′ (or
a small number of similar machines).12 So there is no reason to think
that an episodic implementation of π(τ) overgenerates unless there is
reason to think that full implementations of π′ overgenerate. But there
is no reason at all to think that. Nor is there reason to think that there
is a general problem in the area. Some simple episodic implementa-
tions may be extremely common, of course—but that is only because
some simple full programs are extremely common as well, and widely
implemented. That is not a general problem for the computationalist
about consciousness; unless she is a panpsychist, she will assume that
the episodes of consciousness supervene on less commonly implemented
programs.

SyntheseFD.tex; 22/08/2007; 12:10; p.12



13

This leads to what I think is the most attractive feature of a dispo-
sitional theory of implementation. Call any proper subset p of machine-
table entries of π a subroutine of π. Call a machine table that replaces
the entries of π not in p with simple halt instructions a restriction of
π. Now, if for any τ that activates only dispositions corresponding to
members of p, the dispositional theory of computationalism allows us
to assert the equivalence of subroutines, episodic implementations, and
restrictions of π. According to a dispositional theory of computation,
exactly the same actual activity occurs when a full implementation of π
runs on τ , an episode of implementation of π(τ) occurs, or a restricted
program π′ is run on τ . The computationalist should thus assert that
these are entirely equivalent, at least as far as conscious experience is
concerned.

This equivalence is exactly what the computationalist should want
if he thinks that conscious states can be episodic. What consciousness
depends on is actual activity. As such, if executing a subroutine of
π on τ is sufficient for having some experience E, then an episodic
implementation of π(τ) should be sufficient to have E as well. And
that is just the same as saying that a program that could implement
only the E subroutine would still be conscious of E should it manifest.

We now have the tools in hand to defeat SSP. Revise the computa-
tionalist thesis as follows:

Computationalist Thesis (Episodic version): Conscious states su-
pervene on episodes of implementations of some program.

Actual activity alone determines whether something is episodically im-
plementing π(τ). Therefore, it follows that no two things can differ in
episodic implementation status without also differing in actual activity.
The revised version of premise [5] is false, and the argument for SSP
unsound.

5. Conclusion

What generates SSP is a particular way of thinking about implementa-
tion and computation of an input. On standard theories of implemen-
tation, one first gives an account of what it takes to implement π. One
then uses this to construct a definition of computing π for some τ . That
just amounts to implementing π tout court, and then being started on
τ . Thus the property of being a computer of π is logically prior to the
activity of computing π on τ . Being a computer of π thus requires more
structure than is invoked in the activity itself. Running into SSP is an
unavoidable consequence of this strategy.

SyntheseFD.tex; 22/08/2007; 12:10; p.13



14

Dispositional computationalism allows us to reverse the order of
analysis. We can first determine what dispositions the activity of com-
puting π on τ would require, and define episodic implementation in
terms of that activity. A full implementation can be built up out of
a sufficient set of episodic implementations that are related in the
proper way. In the case of π above, we could take the two overlapping
subroutines—one invoked in odd cases and the other invoked in even
cases—and define the conditions on episodic implementation of each.

To be a full implementation of π is just to implement both episodic
implementations in a way that ensures that the overlapping entries
of each correspond to the same dispositions. More generally, take any
arbitrary set σ of subroutines of π such that for any τ , there is some
subroutine in σ that includes all of the entries sufficient to compute
π(τ). Then S will be a full implementation of π just in case there is
a single set of dispositions that is sufficient to episodically implement
every member of σ.

On this order of analysis, episodic implementation—and thus com-
putational activity—comes first. Computing an input does not require
superfluous structure; for any input there exists a set of actual disposi-
tion manifestations, the occurrence of which is sufficient for computing
that program on that input. Of course, when we talk about full im-
plementation, the dispositional account will say many familiar things:
it will allow for the truth of the same counterfactuals about input, for
example, and a full implementation in normal conditions will always
satisfy simple counterfactual conditions.

The main advantage of moving to a dispositional account is the
flexibility it gives in more complicated cases and the focus on activity
rather than structure. It is the latter that keeps us from falling prey to
SSP, since computing an input is always a matter of changes to local bits
of an implementing systems. Computationalism about consciousness
thus need not conflict with intuitions about the actual activity upon
which conscious states should supervene.13

Notes

1The argument (as well as a defense of the activity thesis) is found in (Maudlin,
1989). Maudlin’s paper has not received the attention that it deserves, in part be-
cause much of the paper is devoted to constructing an elaborate machine, Olympia,
to support his claims. I will not discuss the details of Olympia in this paper; focus
on the example can easily obscure the main point, and the main point is interesting
even if Olympia fails. For aficionados of the original, I discuss Olympia in and around
footnote 11. For additional discussion, see also (Barnes, 1991).

2You might worry about the correct way to cash out phrases like ‘actual activity’
or ‘computationally active’. The notion is presumably meant to capture something

SyntheseFD.tex; 22/08/2007; 12:10; p.14



15

like: only intrinsic properties of positive events can form the supervenience base
for conscious states. The non-occurrence of some property, or the instantiation of
some merely extrinsic property, cannot be required for conscious states. Rather than
spend time on these equally problematic notions, we may simply recast the claim
as a constraint on theories about the supervenience base. Computationalists should
hold that the instantiating stuff is different in some way or other when that stuff is
in a computational state rather than merely potentially in that state. Read ‘actual
activity’ as picking out that difference.

3Of course, there are independent reasons to think that computation cannot
exhaust the nature of transportation. Being a transportation system also requires
that you move some material around, for one! Thanks to an anonymous reviewer
for urging me to clarify the point.

4Michael Antony has offered a parallel argument against functionalism as a whole
(Antony, 1994). Much of what follows could also be applied mutis mutandis to
Antony’s argument, but that is a larger task for another time.

5For a careful and detailed defense of this solution, see (Copeland, 1996).
6The example first appears in (Dreyfus, 1972).
7Thanks to Karen Bennett for the example.
8This is inspired by the device in (Maudlin, 1989). Note that it differs from

the emergentism case because there is a causal connection between the turtles and
any future state—directly in the actual case, indirectly via the computer in the
counterfactual case.

9Note that this is not necessarily in tension with a counterfactual account: if
I think that causation itself admits of a purely counterfactual analysis, then this
expanded account may be cashed out in entirely counterfactual terms. Similarly,
the dispositional account will still be a counterfactual account if dispositions can
be exhaustively analyzed in terms of counterfactuals. There are strong reasons
to think that they cannot be so analyzed, in part for the same sorts of worries
about blocking and illegitimate counterfactuals that cause trouble for the simple
counterfactual account of implementation (Martin, 1994; Fara, 2005). I take no
stand on that issue here, but I do emphasize that even sophisticated counterfactual
accounts of dispositions (like the one sketched in (Lewis, 1997)) make appeal to
intrinsic properties of the possessor of a disposition. Note that the presence of
intrinsic properties upon which dispositions supervene is crucial to the account I
give, and so any reconstruction in counterfactual terms will have to preserve that
feature.

10I remain neutral between identifying the disposition with the first-order property
or treating it as a second-order property that is realized in each case by some first-
order property; for discussion of why this might matter, see (Kim, 1998). As for
whether second-order properties are properly the causes of events, see the discus-
sion in (Jackson and Pettit, 1990). For the present discussion, we only need the
causal facts to supervene on the intrinsic properties of the first-order realizer of the
disposition; we need not take a stand on whether it is identical to those properties.

11 A further complication arises for the full version of Maudlin’s Olympia. If the
armature is moved or the input changed, the supplemental copies of Klara will kick
in and ensure the computationally appropriate transitions. Being careful about what
we count as the relevant dispositions, however, will show that either the full version
of Olympia does not implement π or else is not a demonstration of SSP.

Take some putative disposition d corresponding to a entry of π. Either it is a
disposition solely of the armature, or it is a disposition of a complex disjunctive
object consisting of parts of the armature and parts of the multiple copies of Klara.

SyntheseFD.tex; 22/08/2007; 12:10; p.15



16

If the former, then the whole does not implement a TM, for the dispositional account
requires a single disposition that corresponds to the relevant machine table entry. In
that case, the multiple copies of Klara make true input counterfactuals illegitimately,
and as we saw in section 3 the dispositional account rules out such cases. On the
other hand, the single disposition could be a single disposition that holds of a
gerrymandered swath of the armatures plus copies of Klara. But then, contrary
to Maudlin’s assumption, the copies of Klara are computationally active during
an ordinary run of π(τ), because they are (part of) something that is manifesting
a computationally relevant disposition! Hence they are not superfluous. Further,
any attempt to block off versions of Klara from the armature constitutes a change
to the intrinsic properties of some gerrymandered slice of Olympia. So SSP does
not threaten: there is no change in the computational status of Olympia without a
change in either dispositional structure or actual activity.

12For any unspecified entry in the machine table, there will be a finite number of
computational transitions that S could make; should it fail to make any of those, it
will have halted. For an n-state (m−1)-symbol machine, there will be 2mn+1 ways
to complete an unspecified machine table entry. While the number of completions
may be large for some episodic implementations, it is still far from overgeneration.
Further, any completion will share a subroutine, and the computationalist thesis
arguably should treat them as equivalent.

13Thanks to Adam Elga for introducing me to Maudlin’s work and for a number of
productive discussions on the topic, and to Karen Bennett and Sinan Dogrammaci
for helpful comments on an earlier version of this paper. Special thanks is due to
an anonymous reviewer whose comments helped immensely in refining and focusing
the current work.

References

Antony, M.: 1994, ‘Against Functionalist Theories of Consciousness’. Mind and
Language 9, 105–123.

Barnes, E.: 1991, ‘The Causal History of Computational Activity: Maudlin and
Olympia’. The Journal of Philosophy 88, 304–316.

Bishop, M.: 2002, ‘Counterfactuals Cannot Count: A Rejoinder to David Chalmers’.
Consciousness and Cognition 11, 642–652.

Copeland, B. J.: 1996, ‘What is Computing?’. Synthese 108, 335–359.
Cummins, R.: 1980, ‘Functional Analysis’. In: N. Block (ed.): Readings in the

Philosophy of Psychology, Vol. 1. Harvard University Press, pp. 185–191.
Dreyfus, H.: 1972, What Computers Can’t Do. MIT Press.
Fara, M.: 2005, ‘Dispositions and Habituals’. Nous 39, 43–82.
Jackson, F. and P. Pettit: 1990, ‘Program Explanation: A General Perspective’.

Analysis 50(2), 107–117.
Kim, J.: 1998, Mind in a Physical World. MIT Press.
Lewis, D.: 1997, ‘Finkish Dispositions’. The Philosophical Quarterly 47, 143–158.
Martin, C.: 1994, ‘Dispositions and Conditionals’. The Philosophical Quarterly 44,

1–8.
Maudlin, T.: 1989, ‘Computation and Consciousness’. The Journal of Philosophy

48, 407–32.
Searle, J.: 1990, ‘Is the Brain a Digital Computer?’. Proceedings and Addresses of

the American Philosophical Association 64(3), 21–37.

SyntheseFD.tex; 22/08/2007; 12:10; p.16


